ПАТОГЕНЕТИЧЕСКИ ОБОСНОВАННЫЙ ПОДХОД К ПРЕВЕНТИВНОЙ ТЕРАПИИ ЦЕРЕБРОВАСКУЛЯРНОЙ ПАТОЛОГИИ

М. А. Трещинская

Национальная медицинская академия последипломного образования им. П. Л. Шупика МЗ Украини, Киев

Резюме. В статье представлена клинико-экспериментальная оценка влияния препарата L-аргинина (Тивортина) на процесс апоптоза и функциональное состояние эндотелия по поток-зависимой вазодилатации плечевой артерии у пациентов с цереброваскулярной патологией на ранних стадиях развития процесса. Обследовано 20 больных с начальными проявлениями хронической сосудисто-мозговой недостаточности. Статистически значимое влияние Тивортина в дозе аналогичной суточной дозе L-аргинина 4 г в сутки на индекс индуцированного апоптоза позволяет говорить о цитопротективных свойствах препарата. Увеличение дозы вдвое не оказывало дополнительного положительного влияния. Применение Тивортина в комплексе превентивного лечения у пациентов с сосудистыми факторами риска и признаками эндотелиальной дисфункции говорит о патогенетической направленности его действия.

Ключевые слова: эндотелиальная дисфункция, спонтанный апоптоз, индуцированный апоптоз, цереброваскулярная патология, патогенетическая направленность, превентивное лечение.

ПАТОГЕНЕТИЧНО ОБҐРУНТОВАНИЙ ПІДХІД ДО ПРЕВЕНТИВНОЇ ТЕРАПІЇ ЦЕРЕБРОВАСКУЛЯРНОЇ ПАТОЛОГІЇ

М. А. Тріщинська

Резюме. У статті представлена клініко-експериментальна оцінка впливу препарату L-аргініну (Тівортіну) на процес апоптозу й функціональний стан ендотелію по потік-залежній вазодилятації плечової артерії в пацієнтів із цереброваскулярною патологією на ранніх стадіях розвитку процесу. Обстежено 20 хворих з початковими проявами хронічної судинно-мозкової недостатності. Статистично значимий вплив Тівортіну в дозі аналогічній добовій дозі L-аргініну 4 г на добу на індекс індукованого апоптозу дозволяє говорити про цитопротективні властивості препарату. Збільшення дози вдвічі не виявляло додаткового позитивного впливу. Застосування Тівортіну в комплексі превентивного лікування в пацієнтів із судинними факторами ризику й ознаками ендотеліальної дисфункції говорить про патогенетичну спрямованість його дії.

Ключові слова: ендотеліальна дисфункція, спонтанний апоптоз, індукований апоптоз, цереброваскулярна патологія, патогенетична спрямованість, превентивне лікування.

PATHOGENETICALLY BASED APPROACHES TO PREVENTIVE THERAPY OF CEREBROVASCULAR DISEASE

M. A. Treschinskaya

Summary. The article presents the clinical and experimental evaluation of the influence of the drug L-arginine (Tivortin) on the process of apoptosis and endothelial function by flow-dependent vasodilation of the brachial artery in patients with cerebrovascular disease in the early stages of the process. A total of 20 patients with early manifestations of chronic cerebrovascular insufficiency. Statistically significant impact Tivortin dose equivalent daily dose of L-arginine 4 grams a day on the index induced apoptosis suggests the cytoprotective properties of the drug. Increasing the dose by half did not have an additional positive effect. Tivortin application of preventive treatment in patients with cardiovascular risk factors and signs of endothelial dysfunction suggests pathogenic focus of its activities.

Keywords: endothelial dysfunction, spontaneous apoptosis, induced apoptosis, cerebrovascular pathology, pathogenetic oriented, preventive treatment.

Адрес для переписки

Трещинская Марина Анатольевна канд. мед. наук, доцент Национальная медицинская академия последипломного образования им. П. Л. Шупика 04112, Киев, ул. Дорогожицкая, 9

введение

В последние десятилетия в мире отмечается тенденция к увеличению продолжительности жизни, что неизбежно повышает долю лиц зрелого, пожилого и старческого возраста. В связи с этим увеличивается актуальность охраны их здоровья с целью длительного сохранения качества жизни и трудоспособности.

В то же время сердечно-сосудистые заболевания (ССЗ) являются доминирующей причиной инвалидности и смерти населения в большинстве стран мира. В последнее время все больше внимания уделяется целостности и функционированию эндотелия сосудов, как основе сердечно-сосудистого здоровья. Эндотелиальная функция находится под влиянием сосудистых факторов риска и от-

ражает степень их повреждающего влияния [19, 41]. До тех пор, пока физиологическая функция эндотелия остается интактной и срабатывают компенсаторные механизмы, влияние факторов риска не приводит к развитию сосудистого заболевания. Нарушение физиологической функции сосудистого эндотелия является ранним признаком и независимым предиктором неблагоприятного прогноза при большинстве форм ССЗ [9, 33, 39].

Известные факторы риска ССЗ индуцируют развитие эндотелиальной дисфункции (ЭД), которая является предстадией морфологических изменений при атеросклеротическом процессе (АС) [15]. Выявлено, что ЭД присутствует у пациентов с традиционными факторами риска АС, а именно с гиперхолестеринемией, артериальной гипертензией (АГ), сахарным диабетом (СД) и курящих до того, как процесс проявит себя клинически [34]. Следует отметить, что ЭД очевидна у пациентов с АС различной локализации (ССЗ), а так же с септическим шоком, застойной сердечной недостаточностью, легочной гипертензией и преэклампсией [43].

Эндотелий сосудов представляет собой слой клеток на базальной мембране, которые обладают аутокринной, паракринной и эндокринной функцией [10, 23]. Эндотелий обеспечивает деликатный баланс контррегулирующих путей, которые обеспечивают вазомотрные реакции, пролиферацию клеток, коагуляцию, воспаление и иммунные реакции. Так же эндотелиальные клетки вовлечены в процесс модулирования активности лейкоцитов и тромбоцитов, ингибируют адгезию лейкоцитов и диапедез, поддерживают непроницаемость сосудистого барьера для клеток крови и плазменных белков [3, 12].

Оксид азот (NO), ранее известный как эндотелиальный фактор релаксации, вероятно наиболее важная субстанция, продуцируемая сосудистым эндотелием для регуляции сосудистого тонуса [21, 32]. NO образуется в эндотелии путем преобразованием частично незаменимой аминокислоты L-аргинина в L-цитрулин при участии конституционального фермента эндотелиальной NO-синтазы (eNOS). Эндотелиальная NOS локализуется в эндотелиальных клетках и отвечает за синтез базального уровня NO и за быстрые изменения уровня NO в ответ на физические (напряжение сдвига) и химические стимулы (брадикинин) [27]. Только L-аргинин является субстратом eNOS для синтеза NO, но не только для NO-синтазы L-аргинин является субстратом [29, 31]. L-аргинин используется для синтеза белков, мочевины, креатина, вазопрессина и агматина [44]. Таким образом, активация метаболизма L-аргинина альтернативными путями может быть одним из механизмов недостаточного синтеза NO, а следовательно и ЭД. Самым активным ферментом альтернативного пути метаболизма L-аргинина является аргиназа. L-аргинин не метаболизирующийся с помощью аргиназы до орнитина, используется одним из 4 ферментов: NOS (до образования NO), аргинилtRNA-синтетазой (до образования arginyl-tRNA, предшественника в синтезе белков), аргининдекарбоксилазой (до агматина), аргинин глицин амидинотрансферазой (до креатина).

Есть данные, что окисленные липопротеины низкой плотности (ЛПНП) повышают активность аргиназы и соответственно снижается продукция NO в эндотелиальных клетках аорты человека [4]. Было продемонстрировано, что у мышей на питании с высоким содержанием холестерина и животных, содержащих атерогенный аполипопротеин Е активность аргиназы в сосудистом эндотелии повышена. Выборочное ингибирование аргиназы 2 или гена аргиназы 2 предотвращает снижение синтеза NO сосудистым эндотелием связанного с повышением содержания в плазме диетазависимого холестерина, уменьшает окисление ЛПНП и сосудистую жесткость. Кроме того, ингибирование аргиназы статистически значимо уменьшает тяжесть АС процесса. Эти данные показывают, что аргиназа 2 играет критическую роль в патофизиологии холестерин-обусловленной ЭД и представляет новую мишень для терапии АС [4].

Так же активность NOS ингибируется аналогами L-аргинина, в которых замещен атом азота, такими как NG-monomethyl-L-arginine или NG-nitro-L-arginine [36]. Интересно, что блокирующее влияние этих молекул на NOS может быть преодолено излишком L-аргинина, что указывает на наличие конкуренции за фермент между L-аргинином и его аналогами. Снижение активности еNOS доказано и при повышении концентрации в плазме крови ЛПНП; что так же можно преодолеть путем дополнительного введения L-аргинина [35, 36]. Эти данные указывает на то, что в определенных условиях L-аргинин учувствует в регуляции активности NOS в эндотелиальных клетках.

Доступные данные показывают, что ЭД широко распространена, если не повсеместно, у пожилых людей и развивается по мере старения даже при отсутствии сосудистых факторов риска или сосудистых заболеваний [17, 46]. Другими словами, ЭД может рассматриваться как первое проявление старение у здоровых людей. Полагают, что такая первичная чувствительность сосудистой стенки является «виновницей» повышения риска ССЗ по мере старения [23]. С ЭД ассоциируется возраст-обусловленное снижение когнитивных функций (потеря памяти) и физической активности (снижение активности в течение дня) [22, 42]. Кроме того, ЭД берет участие в патогенезе многих заболеваний, таких как АГ, инсульт, эректильная дисфункция и почечная недостаточность, которые так же ассоциируются с процессом старения [8].

Нарушение функции эндотелия является прогностическим фактором ССЗ, а фармакологическая коррекция персистирующей ЭД может снизить риск АС [8, 14]. Вмешательства, которые благоприятно влияют на эндотелиальную функцию, улучшают клинические исходы [37]. Данные

оценки эндотелиальной функции артерий предплечья являются маркером долгосрочного прогноза ССЗ у пациентов с АГ [34]. Пациенты с нарушенной эндотелиальной функцией по данным ряда исследований, имеют относительный больший риск ССЗ, в связи с чем, можно предположить, что ЭД является предиктором необходимости более агрессивной или комбинированной медикаментозной терапии для снижения риска ССЗ [18, 34]. Наблюдение за эндотелиальной функцией в динамике в ответ на различные формы лечения, может помочь титровать препараты и принимать решение о необходимости дополнительной терапии [23].

Путь L-аргинин-NO играет критическую роль в поддержании нормальной эндотелиальной функции, что отражается на оптимальном функционировании миокарда [30], АД [40], сбалансированности воспалительного ответа [28], апоптозае [7] и защите от оксидативного повреждения [35]. Ряд экспериментальных и клинических исследований показали, что введение субстрата для синтеза NO, L-аргинина, уменьшает проявления ЭД.

L-аргинин может потенцировать синтез NO и уменьшать проявления ЭД за счет восстановления активности eNOS [27]. L-аргинин препятствует окислению $\mathrm{BH_4}$ — основного кофактора NOS. Так же L-аргинин тормозит окисление ЛПНП, которые, в свою очередь, понижают уровень NO; разрывает потенциированный окисленными ЛПНП комплекс eNOS с кавеолином, подавляющий активность фермента; восстанавливает нарушенные ЛПНП функции биомембран, в том числе мембранносвязанных рецепторов, опосредующих стимулирующее активность eNOS влияние ряда биологически активных соединений, зависимых от NO вазодилататоров. Препарат препятствует вызываемому супероксид-анионом и ЛПНП разобщению eNOS, в результате чего она начинает поставлять электроны молекулярному кислороду и увеличивать количество супероксиданиона, способствуя нарушению равновесия NO/O_2 - в сторону последнего.

Кроме того, L-аргинин повышает биоактивность NO посредствам прямой антиоксидантной активности, стимулирует выделение гистамина из основных клеток, что дополняет сосудорасширяющий эффект, снижает активность норэпинефрина, что способствует действию эндогенных вазодилататоров, таких как NO [5]. In vivo применение L-аргинина снижает уровень NOS-опосредованого супероксида [20]. L-аргинин, поступающий в виде соли гидрохлорной кислоты может влиять на внутриклеточный рН, что улучшает транспорт кальция и активацию eNOS, способствует неферментному превращению нитрита в NO [47].

L-аргинин помогает преодолеть блокаду экспрессии eNOS, вызываемую эндогенными ингибиторами eNOS (ассиметричный диметиларгинин-АДМА и L-NMMA), а так же повышенную

активность аргиназы при АС [38]. Так же, L-аргинин восполняет увеличенный расход АК, обусловленный повышенной экспрессией iNOS в клетках иммунной системы и сосудов при АС. Препарат снижает активность лимфоцитов и уровень антител к окисленным ЛПНП [16].

L-аргинин уменьшает концентрацию эндотелина-1, потенциального вазоконстриктора и важного модулятора ЭД (даже может более важного, чем NO) по мере старения [24].

L-аргинин показал многообещающие результаты как средство профилактики ЭД при остром стрессе. К примеру, курение и употребление жирной пищи являются достоверными причинами ухудшения эндотелиальной функции. Пероральное применение L-аргинина перед курением или употреблением жирной пищи предупреждает вредное воздействие этих факторов на эндотелиальную функцию [25, 26].

Доза-зависимая клиническая эффективность L-аргинина по данным исследований на людях заключается в том, что в небольших концентрациях в плазме от 80 до 800 ммоль/л L-аргинин обладает селективным влиянием на эндотелиальную функцию (у пациентов с повышенным содержанием АДМА). В более высокой концентрации (в плазме 800-8000 ммоль/л) препарат оказывает прямое вазодилатирующее действие (вероятно благодаря плеотропному эндокринному влиянию на синтез инсулина и гормона роста). В больших концентрациях (в плазме больше 8000 ммоль/л) как L-аргинин, так и D-аргинин оказывают неспецифическое вазодилатирующее влияние, за счет осмотического эффекта, ацидоза и влияния на эндокринную систему [45].

Мета-регрессивный анализ результатов исследований показал, что гетерогенность влияния L-аргинина на ЭД (судя по показателю потоко-зависимой вазодилатации *а. brachialis* (ПЗВ)) определяется базисным показателем ПЗВ, то есть наличием дисфункции эндотелия. Анализ по подгруппам выявил, что эффект от приема L-аргинина был положительным, когда ПЗВ была ниже, и отрицательным, когда ПЗВ была выше базисной линии. Эти данные показывают, что вышеупомянутое вмешательство способно восстановить эндотелиальную функцию, но не могут ее увеличивать или истощать. Статистическая обработка результатов выявила обратную зависимость между ПЗВ и степенью эффективности L-аргинина [6].

Взаимосвязь между сосудистыми факторами риска, ЭД, АС и его осложнениями в виде ССЗ, является основой для формирования стратегии терапии при поражении сосудов. Традиционное направление включает влияние на основные факторы риска, а именно контроль АД, гликемии, коррекцию дислипидемии, отказа от курения, ограничение употребления алкоголя, снижение избыточной массы тела. В то же время, перспективным является направление, основанное на восстановлении баланса между продукцией и катаболиз-

мом оксида азота — терапия L-аргинином может оказывать дополнительную защиту сосудов от повреждающих факторов риска.

Эффект L-аргинина на ЭД не является универсальным феноменом. Действие препарата зависит от изучаемого участка артерии, наличия или отсутствия ЭД, морфологических АС изменений, наличия ССЗ и достигаемой концентрации L-аргинина. Вероятно, такая стратегия могла бы быть наиболее эффективной на доклиническом этапе у пациентов с сосудистыми факторами риска (АГ, СД, курящих, особенно в сочетании с гиперхолестеринемией) [11].

С другой стороны, практически всегда повреждение эндотелия сопровождает процесс перекисного окисления липидов, что усугубляет дефицит эндогенного NO за счет его ускоренной деградации активными формами кислорода. Кроме того, взаимодействие NO с супероксидом (и другими кислородными радикалами) приводит не только к утрате вазодилатирующего потенциала NO, но и к образованию высокотоксичного пероксинитрита (ONOO') [1]. Известно, что при высоких концентрациях пероксинитрит индуцирует апоптоз, а так же блокирует синтез простациклина, усиливая при этом продукцию тромбоксана и лейкотриенов. [1]. Другими словами, ЭД и активация процесса апоптоза могут являтся ключевыми звеньями сосудистого повреждения.

Апоптоз играет важную роль в реализации механизмов адаптации организма к воздействию внешней среды. Это генетически регулируемый процесс, участвующий в дифференцировке, морфогенезе, а так же в поддержании клеточного гомеостаза [2].

В наиболее общей форме назначение апоптоза (в сочетании с его альтернативой — пролиферацией) состоит в определении размеров и «архитектуры» организма:

- поддержание численности клеток в популяции на заданном уровне;
- определение этого уровня и его изменение под влиянием внешних (по отношению к клетке) сигналов вплоть до полной элиминации данного типа клеток;
- в обеспечении правильного соотношения численности клеток различных типов;
- селекция разновидностей клеток внутри популяции (в том числе элиминация клеток с генетическими дефектами).

На основании знаний о роли апоптоза в поддержании гомеостаза в организме можно предположить, что недостаточная активность апоптоза может отразиться на процессах морфогенеза, элиминации клеток с генетическими поломками, становлении аутотолерантности и проявляться в форме разного рода дефектов развития, аутоиммунных процессов и злокачественных опухолях. С другой стороны, заболеваний основой которых является усиление апоптоза клеток организма, не меньше. Наиболее выраженные формы такого рода нарушений, при которых в процесс апоптоза тотально вовлекаются клетки любых типов, обычно несовместимы с развитием плода и приводят к внутриутробной гибели. Наиболее распространенными вариантами патологии такого рода в сформировавшемся организме являются разного рода аплазии и дегенеративные процессы. Наиболее разнообразные их формы описаны в области патологии системы крови. Другим примером болезней, связанных с усилением апоптоза, являются заболевания нервной системы, вызываемые атрофией определенных ее участков. Как правило, эта атрофия является следствием индукции апоптоза. К таким заболеваниям относятся боковой амиотрофический склероз, болезнь Альцгеймера, спинальная мышечная атрофия и другие заболевания нервной системы [2].

Существует ряд других состояний, при которых в реализации основного поражения решающая роль принадлежит апоптозу. Их примером может служить инфаркт миокарда (апоптоз является преобладающей формой гибели миоцитов в ранний период развития инфаркта), инсульт, токсический (в частности, алкогольный) гепатит и т. л.

Со временем увеличивается доля патологических процессов, основывающихся на усилении апоптоза, которое вызвано действием внешних апоптогенных факторов. На первом месте среди них находится ионизирующая радиация. Аналогичный эффект дают многие химиотерапевтические препараты, используемые при лечении опухолей, а также гормоны, прежде всего глюкокортикоиды, широко применяемые при лечении различных заболеваний. Источником апоптогенных факторов служит внешняя среда. Нормальное окружение человека практически не является источником апоптогенных воздействий, однако при формировании экологического неблагополучия во внешней среде накапливаются факторы, моделирующие или вызывающие активацию апоптоза [2].

Таким образом, сбалансированная коррекция процесса апоптоза, наряду с защитой сосудистого эндотелия могут оказаться наиболее патогентически обоснованным подходом на ранних этапах патологических процессов, чаще всего связанных с возрастом, наиболее ярким примером которых является хроническая сосудисто-мозговая недостаточность.

Поскольку сердечно-сосудистая, и в частности цереброваскулярная патология значительно снижают качество жизни людей с возрастом на наш взгляд профилактика состояний развивающихся на фоне эндотелиальной дисфункции является одним из наиболее перспективных направлений современной медицины. Кроме того, нам показалось уместным изучить какое влияние на процесс апоптоза оказывает препарат, благоприятно влияющий на эндотелиальную функцию (по данным литературы и наших собственных исследований).

Таким образом, целью нашего исследования явилась клинико-эксперементальная оценка влияния препарата L-аргинина (Тивортина) на процесс апоптоза у пациентов с цереброваскулярной патологией на ранних стадиях развития процесса.

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

В исследование было включено 20 больных с начальными проявлениями хронической сосудисто-мозговой недостаточности (начальными проявлениями недостаточности мозгового кровообращения (НПНМК) и дисциркуляторной энцефалопатией 1-й стадии (ДЭП 1) согласно классификации Е. В. Шмидта) в возрасте от 40 до 63 лет (средний возраст — $(53,8 \pm 6,2)$ года). Среди обследованных пациентов было 11 женщин и 9 мужчин. АГ 1-2 ст. была диагностирована у 18 (90 %) обследованных пациентов.

Диагноз «начальные проявления недостаточности кровоснабжения головного мозга» устанавливается при наличии у больного факторов риска сосудистого заболевания и не менее двух из следующих жалоб: головная боль, головокружение, шум в голове, нарушение памяти, снижение работоспособности, нарушение сна, которые отмечаются пациентом не менее 1 раза в неделю на протяжении 3 последних месяцев, при отсутствии признаков органического дефицита, а также отсутствии в анамнезе черепно-мозговой травмы, преходящего нарушения мозгового кровообращения, инфекционных заболеваний головного мозга.

В исследование не включали лиц, перенесших нарушения мозгового кровообращения, инфаркт миокарда, а также тяжелые соматические заболевания. Всем пациентам проводилась ядерная магнитно-резонансная томография с целью исключения значимого повреждения головного мозга (для исключения немых инфарктов и другого очагового повреждения головного мозга и таким образом подтверждения диагноза НПНМК и ДЭП 1 стадии).

Всем пациентам проводились общеклиническое и клинико-неврологическое обследования, на основании которых пациенты рандомизировались для исследования. Клинико-лабораторные обследования позволяли исключить тяжелую соматическую патологию и помогали выявить сосудистые факторы риска (гипергликемия, дислипидемия). Клинико-инструментальные методы обследования помимо МРТ включали дуплексное сканирование экстра- и интракраниальных сосудов головного мозга, с помощью которого исключались гемодинамически значимые стенозы и деформации сосудов головы и шеи, а так же выявлялись пациенты с атеросклеротическим поражением сосудов головы.

Функциональное состояние эндотелия оценивали по величине прироста диаметра, или потокзависимой вазодилатации (ЭЗВД), плечевой артерии с помощью теста реактивной гиперемии (Celermajer D. S. et al., 2002). Плечевую артерию

визуализировали с помощью ультразвукового сканера «Simens G-50» (Medical Inc., США, 2002 г) линейным датчиком с частотой 7 МГц. С помощью компрессионной манжеты блокировали кровоток в плечевой артерии на 5 минут, а затем вызывали быструю декомпрессию. В режиме двухмерного ультразвукового сканирования датчиком высокого разрешения определяли изменение диаметра плечевой артерии в ответ на увеличивающийся поток крови, что сопровождается повышением напряжения сдвига, активацией эндотелиальной NO-синтазы (eNOS) и выделением оксида азота (N0). Принято считать нормальной реакцией плечевой артерии в пробе с реактивной гиперемией ее дилатацию более чем на 10 % от исходного диаметра. Сосудистая реакция рассматривается как патологическая в случаях, когда прирост диаметра составляет менее 10 % от исходного уровня либо когда наблюдается вазоконстрикция.

Всем пациентам до проводимого лечения производился забор крови натощак с целью исследования показателей апоптоза (спонтанный, индуцированный апоптоз и расчет индекса индуцированного апоптоза) и их изменения на фоне введения in vitro препарата L-аргинина — Тивортин («Юрия-Фарм», Украина) в дозе аналогичной суточной дозе 4 и 8 г L-аргинина методом проточной цитофлуорометрии. Изучался индекс индуцированного апоптоза (ИИА) лимфоцитов периферической крови, который отражает не просто количество клеток, имеющих морфологические признаки апоптоза при микроскопическом исследовании ткани как индекс апоптоза, а степень стойкости клеток к повреждающим стимулам (в качестве индуктора апоптоза использовались глюкокортикостероиды). Данный индекс позволяет оценить соотношение показателей спонтанного и индуцированного апоптоза и таким образом приблизить лабораторные данные к клинике. Важным моментом явилась оценка ИИА на фоне L-аргинина в дозе аналогичной внутривенному введению 4 и 8 г Тивортина в сутки.

Все пациенты в ходе лечения, которое включало терапию, направленную на коррекцию факторов риска, прежде всего артериальной гипертензии и дислипидемии, при необходимости, получали курс Тивортина в течение 10 дней в дозе 100 мл (4 г L-аргинина) внутривенно капельно.

Для статистического анализа данных применялась программа Statistica 6,0. Количественные показатели представлены в виде среднего арифметического значения и стандартного отклонения. Статистически значимая разница между показателями принималась при p < 0.05.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Все пациенты до лечения предъявляли ряд жалоб: на головную боль (n=16 (80 %)), чаще всего тупого характера, без четкой локализации, не связанной с повышением артериального давления, возникающую при переутомлении, перемене по-

годы; головокружение (n=9 (45 %)), как правило, несистемного характера, усиливающееся при перемене положения тела; шум в голове диффузного характера (n=11 (55 %)), постоянный или преходящий; а так же нарушение памяти (n=18 (90 %)) связанное, прежде всего, с повышенной отвлекаемостью, трудностью фокусировки внимания, что приводило к снижению памяти на текущие события, нарушению механической памяти, логическая память оставалась интактной; нарушения сна (n=6 (30 %)) у обследованных пациентов чаще всего были связаны с повышенной лабильностью и встречалось преимущественно у мужчин (n=4 (20 %)).

После курса лечения большинство пациентов отметили повышение работоспособности (17 человек из 20 до лечения), снизилась интенсивность и частота жалоб. Частота жалоб после курса Тивортина изменилась следующим образом: головная боль наблюдалась у 60 % пациентов, (n=12); головокружение — у 20 % больных (n=4); шум в голове диффузного характера наблюдался у 85 % обследованных (n=17); нарушение памяти или точнее рассеянность была выявлена у 35 % пациентов (n=7); нарушения сна — у 15 % (n=3) обследованных мужчин. Следует отметить, что Тивортин переносился хорошо, побочные явления при внутривенном введении отмечены не были.

Данные оценки эндотелиальной функции представлены в таблице 1, где показано, что до лечения (оценка потоко-зависимой вазодилатации проводилась до и после курса лечения Тивортином) ЭД наблюдалась у 18 пациентов (90 %), в то время как после лечения признаки ЭД выявлялись лишь у 3 больных (15 %).

Ключевым моментом исследования было выявление положительного влияния Тивортина на

Таблица 1 Динамика показателей потоко-зависимой вазодилатации

Показатель	До лечения (n=20)	После лечения (n=20)
ЭЗВД < 10 %, к-во больных	18 (90 %)	3 (15 %)*
Исходный диаметр плечевой артерии, мм	4,02 ± 0,31	4,15 ± 0,26
Диаметр на 1-й сек, мм	4,46 ± 0,38	4,76 ± 0,27
Диаметр на 60-й сек, мм	4,83 ± 0,35	5,21 ± 0,37*
ЭЗВД на 1 сек, %	9,79 ± 7,25	11,94 ± 3,98
ЭЗВД на 60 сек, %	10,15 ± 7,80	20,10 ± 9,64*
Время восстановления, мин	4,69 ± 0,62	4,10 ± 0,97*

индекс индуцированного апоптоза, причем в дозе 4 г в сутки, что только подтверждает гипотезу о дозозависимости эффекта и, в данном случае, регулирующем влиянии доз, приближающихся с суточной потребности в частично незаменимой аминокислоте (табл. 2).

Показатель спонтанного апоптоза не отличался в зависимости от введения Тивортина, что только подтверждает генетическую детерминированность данного процесса. Статистически значимое влияние Тивортина в дозе аналогичной суточной дозе L-аргинина 4 г в сутки на ИИА позволяет говорить о потенциально протективных свойствах препарата в данной дозе относительно внешних проапоптогенных воздействий. При этом абсолютные показатели спонтанного и индуцированного апоптоза значимо не отличались, что подтверждает регулирующую, сбалансированную направленность действия препарата. Следует отметить, что увеличение дозы вдвое не оказывало дополнительного положительного влияния.

Таким образом, применение Тивортина в комплексе превентивного лечения у пациентов с сосудистыми факторами риска и признаками эндотелиальной дисфункции позволяет говорить о его патогенетической направленности действия.

ЛИТЕРАТУРА

- Биленко М. В., Ладыкина М. В., Федосова С. В., Сравнительная оценка цитотоксическго эффекта перекиси водорода и фактора некроза опухолей альфа на неишемизированные и ишемизированные эндотелиальные клетки // Вопр. мед. химии. — 1999. — №5. — С. 2—7.
- Программированная клеточная гибель / Под ред. В. С. Новикова. –СПб., 1996.
- Anderson, T. J. (1999) Assessment and treatment of endothelial dysfunction in humans. J. Am. Coll. Cardiol. 34: 631–638.
- Arginine and Arginase: Endothelial NO Synthase Double Crossed— Vanhoutte Circ Res. 2008; 102: 866-868.
- Buger RH, Bode- Buger SM, Mugge A, Kienke S, Brandes R, et al. 1995. Supplementation of hypercholesterolaemic rabbits with L-arginine reduces the vascular release of superoxide anions and restores NO production. Atherosclerosis 117:273

 –84.
- Buger RH, Bode- Buger SM, Szuba A, Tangphao O, Tsao PS, et al. 1998. ADMA: a novel risk factor for endothelial dysfunction. Its role in hypercholesterolemia. Circulation 98:1842–47.
- 7. Brune B, Messmer UK, Sandau K. The role of nitric oxide in cell injury. Toxicol Lett 1995;82-83:233-237.
- Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005. – 23(2).– 233–246

Таблица 2 Показатели апоптоза лимфоцитов периферической крови пациентов с начальными проявлениями недостаточности мозгового кровообращения

Доза Тивортина	Спонтанный апоптоз	Индуцированный апоптоз	АИИ
Без препарата	19,44 ± 8,2	23,53 ± 7,7	0,838 ± 0,2
4 г/сут	17,29 ± 5,74	23,64 ± 7,2	0,736 ± 0,1*
8 г/сут	16,97 ± 6,13	21,50 ± 7,3	0,801 ± 0,03

Примечание. * — статистически значимое отличие по указанному в шапке колонки показателю между образцами.

- Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840-4.
- Celermajer D. Endothelial function: does it matter— Is it reversible – J Am Coll Cardiol. 1997;30:325–333.
- Vane J, Anggard E, Botting R. Regulatory function of vascular endothelium. N Engl Med. 1990;323:27-36.
- Celermajer, D.S., K.E. Sorensen, D. Georgakopoulos, C. Bull, O. Thomas, J. Robinson, and J.E. Deanfield. 1993. Cigarette smoking is associated with dose-related and potentially reversible impairment of endotheliumdependent dilation in healthy young adults. Circulation. 88:2149-2155.
- Cooke, J. P. (2000) The endothelium: a new target for therapy. Vasc. Med. 5: 49–53.

 Creager, M. A., Cooke, J. P., Mendelsohn, M. E., Gallagher, S. J., Coleman, S. M., Loscalzo, J. & Dzau, V. J. (1990) Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. Clin. Invest. 86:228-234.
- 15. Deanfield J, Donald A, Ferri C, et al. Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: a statement by assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005;23(1):7–17.

 16. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007;115(10):1285–1295.

- Greager M.A. L-arginin in endothelial and vascular health // J Nutr.-Supp. 1997.-10.-P. 2880-2887. Heffernan KS, Vieira VJ, Valentine RJ. Microvascular function and ageing L-arginine, tetrahydrobiopterin and the search for the fountain of vascular youth. J Physiol 2008;586(8):2041–2042.
- Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104:2673–2678. 20. Huggins G.S, Pasternak RC, Alpert NM, et al. Effect of
- short term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dila-
- tor reverse. Circulation 1998;98:1291–6. 21. Huk I,Nanobashvili J,Neumayer C, Punz A, MË uller M, et al. 1997. L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circulation 96:667–75.
- Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 84: 9265-9269.
- 23. Kearney-Schwartz A, Rossignol P, Bracard S, et al. Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke 2009;40(4):1229–1236.
- 24. Kuvin JT, Karas RH. Clinical utility of endothelial function testing: ready for prime time— Circulation 2003;107(25):3243—3247. Lerman A, Burnett JC Jr, Higano ST, McKinley LJ,
- Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in
- humans. Circulation 1998;97(21):2123–2128. Lerman A, Burnett JC Jr, Higano ST, McKinley LJ, Holmes DR Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in
- humans. Circulation 1998;97(21):2123–2128. Lin CC, Tsai WC, Chen JY, Li YH, Lin LJ, Chen JH. Supplements of L-arginine attenuate the effects of

- high-fat meal on endothelial function and oxidative stress. Int J Cardiol 2008;127(3): 337-341
- Loscalzo J. L-Arginine and Atherothrombosis //J. Nutr. 134: 2798S-2800S, 2004.
- Lyons CR. The role of nitric oxide in inflammation. Adv Immunol 1995;60:323-371
- Moncada, S. & Higgs, A. (1993) The L-arginine—nitric oxide pathway. N. Engl. J. Med. 329: 2002—2012. Morikawa E, Moskowitz MA & Huang Z et al. (1994)
- L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke 25:
- Palmer, R. M., Ashton, D. S. & Moncada, S. (1988) Vascular endothelialcells synthesize nitric oxide from Larginine. Nature 333: 664-666.
- Palmer, R. M., Ferrige, A. G. & Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:
- Perez-Vizcaino F, Duarte J, Andriantsitohaina R. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res 2006:40:1054–65.
- Res 2006;40:1054–65. Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001;104: 191–196. Pritchard KA, Groszek L, Smalley DM, Sessa WC, Wu M, et al. 1995. Native lowdensity lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ. Res. 77:510–18. Rees DD, Palmer RMJ, Schulz R, Hodson HF, Moncada S. 1990. Characterization of three inhibitors of endothelial nitric oxidesynthase in vitro and in vivo.
- of endothelial nitric oxidesynthase in vitro and in vivo.
- Br. J. Pharmacol. 101:746–52.
 Suessenbacher A, Frick M, Alber HF, Barbieri V, Pachinger O, Weidinger F. Association of improvement of brachial artery flow-mediated vasodilation with car-
- diovascular events. Vasc Med 2006;11(4):239–244. Surdacki A, Nowicki M, Sandmann J, Tsikas D, BEoger RH, et al. 1999. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetrical dimethylarginine in men with essential hypertension. J. Cardiovasc. Pharmacol. 33:652-58.
- Suwaidi JA, Hamasaki S, Higano ST, et al. Long-term follow-up of patients with mild coronary artery disease and endothelial 2000;101:948–54. dysfunction. Circulation
- Umans JG, Levi R. Nitric oxide in the regulation of blood flow and arterial pressure. Annu Rev Physiol 1995;57:771-790
- Wang J, Brown MA, Tam SH, et al. Effects of diet on measurements of nitric oxide metabolites. Clin Exp Pharmacol Physiol 1997;24:418–20.
- Welsch MA, Dobrosielski DA, Arce-Esquivel AA, et al. The association between flow-mediated dilation and physical function in older men. Med Sci Sports Exerc 2008;40(7):1237—1243.
- Widlansky, M. E., Gokce, N., Keaney, J. F., Jr. & Vita, J. A. (2003) The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 42: 1149-1160.
- Wu G, Morris SM Jr. 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336:1-17.
- Wu G, Morris SM, Jr. Arginine metabolism in mammals. In: Cynober LA ed. Metabolic and therapeutic aspects of amino acids in clinical nutrition. Boca Raton, FL: CRC Press, 2004: 153-67
- Yavuz BB, Yavuz B, Sener DD, et al. Advanced age is associated with endothelial dysfunction in healthy elderly subjects. Gerontology 2008;54(3):153-156
- Zweier, J. L., Samouilov, A. & Kuppusamy, P. (1999) Non-enzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta 1411: 250-262.